

`

AWS - INSTALLATION &

CONFIGURATION GUIDE

GENERATED BY:

GENERATED BY:

INSTALLATION & CONFIGURATION GUIDE 2

Contents

Introduction .. 4

Requirements .. 6

Step A-ECS – Provision Cloudockit Container (hosted on ECS/Fargate) ... 7

STEP 0 – Create a S3 Bucket and upload the license .. 7

STEP 1 – Create an AWS Secret in SECRET MANAGER to store information to connect to Cloudockit

Container Repository .. 7

STEP 2 - Creating Policy to access the Secret .. 7

STEP 3 - Creating Role assumed by ECS tasks to access the Secret .. 8

STEP 4 - Creating VPC and Subnet + Open required ports .. 8

STEP 5 - Creating Security Group .. 8

STEP 6 - Creating the Task Definition File ... 8

Parameters .. 8

Environment variables .. 8

STEP 7 - Creating the Task Definition .. 9

STEP 8 - Creating the cluster and register Task Definition.. 9

STEP 9 – Validate Service is Up & Running ... 9

Step B (Optional) – Configure Cloudockit Web UI .. 11

Step C (Optional) – Configure Cloudockit Container to support Scheduling. ... 16

Start Cloudockit Scheduler Container ... 16

Set Settings in the settings file .. 16

Step D (Optional) – Configure Cloudockit Container to support the creation of Compliance Rules,

Tailored Diagrams and Settings .. 17

Create (or re-use) an Azure Cosmos DB .. 17

Configure Cloudockit Container to use the Azure Comos DB ... 19

Step E – Understand Cloudockit API Container .. 20

Step F – Test your license.. 21

Activate and setup components for your license ... 21

Step G – Validate that you can authenticate to the environment that you want to scan 22

Step H – Test the document generation ... 24

INSTALLATION & CONFIGURATION GUIDE 3

Step I – Manage your document generation .. 25

/ListDocumentGeneration .. 25

/StopDocumentGeneration .. 25

Annex – Deploy multiple instances of Cloudockit Container.. 26

Step 1 – Create / Configure Azure Key Vault .. 27

Step 2 – Configure Azure Redis Cache .. 28

Step 3 – Define the Environment Variables required to run the Cloudockit Container 28

Annex - AWS Container use-cases .. 31

Introduction .. 31

AWS ECS Container ... 31

A – Scanning multiple AWS accounts using Cross-Account role ... 31

B – Using the container with the ECS Task Role instead of IAM user keys ... 33

C – Running a scheduled scan in AWS using ECS container. ... 36

Container details ... 39

Environment Variables .. 39

Logging .. 40

Annex – Troubleshooting .. 41

INSTALLATION & CONFIGURATION GUIDE 4

Introduction

The purpose of this document is to provide the detailed steps to run and configure Cloudockit Docker

container image.

There are two types of images that you should run:

• cdk-web-linux that contain the Cloudockit API/Web interface. This is mandatory to run this

container.

• cdk-scheduler-linux that contain the Cloudockit Scheduling features. This is an optional

container you do not need to install if you do not want to use schedules.

The cdk-web image contains the Cloudockit API that you can call from your CI/CD processes or any other

process / scenario which fits your business needs.

In addition to the API, we have integrated the complete Cloudockit Web UI in the image so that you can

get all the features that you are accustomed to.

Cloudockit Docker container images provide you a way to run Cloudockit into your own isolated Cloud

environment and gives you the exact same features as Cloudockit Website and Cloudockit Desktop.

Here is the high-level overview of the solution :

The following hosting environments are currently supported:

• Web App for Containers on Azure - Recommended

• ECS (Elastic Container Services) Fargate on AWS

• ACI (Azure Container Instance) on Azure

• GKE (Google Kubernetes Engine) on GCP

A few important things to note:

• These configurations are for the hosting of the container, not for the environment that you scan

which means that you can scan a GCP project using the Cloudockit Container API even if the

container runs on Azure.

INSTALLATION & CONFIGURATION GUIDE 5

• Depending on the hosting option that you choose, there could be some limitations. Those

limitations are related to the hosting option and not the Cloudockit Container itself. As an

example, ACI currently does not yet support private networking (virtual networks) for Windows

Based Container.

• The current document does not detail networking configuration like isolation/https setup as this

is highly depending on your internal setup.

• Container is currently designed to have one node running which should be more than enough to

generate all your documents you need.

• For production environment, we recommend 4vCPU + 8 Gb RAM

• Cloudockit Web UI only supports Azure AD as SSO authentication. If you do not set it up, you will

only be able to access the API portion.

The following sections contains the different steps to deploy the Cloudockit Docker container image on

the AWS Platform.

Here is an overview of the different steps you must do to deploy Cloudockit Container:

Step A - Deploy Cloudockit Container (cdk-web)

• This Step is subdivided in 8 Different steps

• Those steps have been scripted to ease deployment process so we strongly
advice to use the scripted approach

Step B (Optional) - Activate Cloudockit Container UI

• Create an Azure AD Application

Step C (Optional) - Activate the Scheduling feature (cdk-
scheduler)

• Set the appropriate settings to activate scheduling

Step D ... - Do some tests

• Test the license validity

• Start some documentation

INSTALLATION & CONFIGURATION GUIDE 6

Requirements

To install Cloudockit Container in your environment, you will need:

• A S3 Bucket

• A Secret Manager to store the secret to pull the image from Cloudockit Repo.

• A Role / Policy to access the Secret.

• A VPC/Subnet to host the ECS Cluster.

• A ECS Cluster (Fargate)
o Note that this is the recommended approach as this is the one we have scripted but it

does not mean that we do not support other types of deployment like AKS or other as

Cloudockit Container is a standard plain container.

• (Optional) An Azure Active Directory Application if you want to activate Cloudockit Container

Web UI

Important note

We highly recommend that you use the script (based on AWS CLI) provided by Cloudockit
Team to provision/test Cloudockit Container.

INSTALLATION & CONFIGURATION GUIDE 7

Step A-ECS – Provision Cloudockit Container (hosted on ECS/Fargate)

STEP 0 – Create a S3 Bucket and upload the license

To run Cloudockit Container, you need to have a S3 Bucket that will be used to store information

(license file, settings…). As the license file is linked to this S3 bucket, you need to choose a container

Name and send that name to Cloudockit Support Team (support@cloudockit.com) so that they generate

a license file.

Once you receive your license file, you can upload the license file into a file named

cloudockitinternal/license.json.

Please note that the Json license file is tied to the S3 Bucket name so you need to create/use an S3

Bucket with a name that matches the name provided to Cloudockit Support Team.

Important note

Ensure that the Storage Account exists in your environment before sending it to the
Cloudockit Support Team.

Code extract

Refer to STEP 0 in the provided script for ECS Fargate.

STEP 1 – Create an AWS Secret in SECRET MANAGER to store information to connect to

Cloudockit Container Repository

In this step, you need to create a Secret that will contain the information to connect to Cloudockit

Container Registry so that your ECS can pull the image.

Secret should contain username and password properties, see code for reference.

Code extract

Refer to STEP 1 in the provided script for ECS Fargate.

STEP 2 - Creating Policy to access the Secret

Once you have created the secret, you need to create a policy that will allow access to the secret.

The policy needs to provide Allow Effect to the action secretsmanager:GetSecretValue to the secret

previously created.

Code extract

Refer to STEP 2 in the provided script for ECS Fargate.

mailto:support@cloudockit.com

INSTALLATION & CONFIGURATION GUIDE 8

STEP 3 - Creating Role assumed by ECS tasks to access the Secret

Once the policy has been created, we need to create a Role attached to that policy so that ECS assumes

the role to be able to pull the remote image.

The role needs to have the Allow Effect and needs to have the action sts:AssumeRole for the service

ecs-tasks.amazonaws.com

Code extract

Refer to STEP 3 in the provided script for ECS Fargate.

STEP 4 - Creating VPC and Subnet + Open required ports

In this step, we need to configure a VPC, a Subnet, and a Route Table so that the subnet is reachable and

so that the subnet has connectivity to the Internet to pull the image. Please note that you can use an

existing VPC if it has the appropriate requirements.

Code extract

Refer to STEP 4 in the provided script for ECS Fargate.

STEP 5 - Creating Security Group

To Secure the deployment, we create a security group with only port 80 open (please use https/443 for

Production usage)

Code extract

Refer to STEP 5 in the provided script for ECS Fargate.

STEP 6 - Creating the Task Definition File

Once networking configuration is done, we need to create a task definition file that contains the

following information.

Parameters

Name Value

family Cloudockit

executionRoleArn arn:aws:iam::<accntnumber>:role/ecsTaskExecutionRole

networkMode Awsvpc

requiresCompatibilities Fargate

ContainerDefinitions Should refer to the image and the secret to access it

Environment variables

Name Value

AppInsightKey (optional) An Azure App Insight Instrumentation Key for advanced
login

INSTALLATION & CONFIGURATION GUIDE 9

Name Value

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS
or GCP.

Possible values are:

• Azure

• GCP

• AWS (select this value)

DockerStorageAWSBucketName Enter the name of the S3 Bucket

DockerStorageAWSAccessKeyId (option 1) Enter the Access Key Id for Full control of the AWS S3
Bucket

DockerStorageAWSSecretAccessKey
(option 1)

Enter the Secret Access Key for Full control of the AWS
S3 Bucket

DockerStorageUseAwsRole (option 2) True
(permissions are provided by the ECS that hosts the
container)

DockerStorageUseAwsGov (optional) Specify "True" if you are using Aws Gov Cloud or

"False" otherwise.

If the variable is not present, it’s "False" by default

➔ Note: parameters noted as option 1 and 2 are mutually exclusive

Code extract

Refer to STEP 6 in the provided script for ECS Fargate.

STEP 7 - Creating the Task Definition

Then, from the Task Definition file, we just create a task definition:

Refer to STEP 7 in the provided script for ECS Fargate.

STEP 8 - Creating the cluster and register Task Definition.

Last step is to create a cluster and start the service:

Refer to STEP 2 in the provided script for ECS Fargate.

STEP 9 – Validate Service is Up & Running

From the AWS Console, navigate to the cluster, tasks and then click on the public IP to open it.

You should see Cloudockit Container running:

INSTALLATION & CONFIGURATION GUIDE 10

INSTALLATION & CONFIGURATION GUIDE 11

Step B (Optional) – Configure Cloudockit Web UI

Cloudockit Container supports a Web UI that allows users to authenticate by using Azure AD or Azure

User Authentication.

This Web UI supports Azure Active Directory as a first step to authenticate users.

Once connected, you will be able to connect to Azure, AWS and GCP using Service Accounts (Azure AD

App, GCP Service Credentials, AWS Access Keys).

To activate Azure AD Authentication, you need to follow these steps:

• Go to your Azure Active Directory

• Click on App Registration and then click New Registration

• Enter a Name (any name you want) and select Single Tenant

• Enter the following redirect URIs (reply url):
o https://<AppSvcName>.azurewebsites.net/LogIntoAzure/CatchCodeAzure

o https://<AppSvcName>.azurewebsites.net/LogIntoCDKWithAAD/CatchCode

where AppSvcName is the name of your App Service

INSTALLATION & CONFIGURATION GUIDE 12

Note: the interface will not let you enter the 2nd URL before clicking on Register so you’ll have to enter it

after registration, in the Authentication page:

INSTALLATION & CONFIGURATION GUIDE 13

Then, go to API Permissions, click on +Add a permission and select :

- Microsoft Graph, then Delegated permissions and then select User.Read:

- Azure Service Management, then Delegated permissions and then select user_impersonation:

INSTALLATION & CONFIGURATION GUIDE 14

Click Add permissions. You should now see the following :

Then, click on Grant Admin consent for Default Directory (if you don’t have the permissions to click on

Grant admin consent, please contact your IT admin to do it for you):

INSTALLATION & CONFIGURATION GUIDE 15

Then, take note of the client ID from the Overview tab and then go to Certificates & Secrets and

generate a new Client Secret, take note of it.

Update the settings file from your storage account (in the cloudockitinternal folder) with the value of

the previously created Azure AD Application:

{

"AzureADTenant": "mytenant.onmicrosoft.com",

"AzureADAppID": "zzzzz",

"AzureADAppKey": "zzzzz"

}

INSTALLATION & CONFIGURATION GUIDE 16

Step C (Optional) – Configure Cloudockit Container to support

Scheduling.

Cloudockit Container supports a Scheduling Web UI that allows users to choose when they want to

schedule the document generation.

To activate scheduling, you need to spin-up a new container based on the cloudockitscheduler image

and set the appropriate settings in your settings file.

Start Cloudockit Scheduler Container

You need to follow the same procedure as you did in the previous step to spin up a new Scheduling

container. You need to use the cloudockitscheduler image. This scheduler is basically reading the

schedules files created from the UI and calling the API according to the schedule.

Here are the settings for the container:

• CPU : 1+

• RAM : 1.5GB+

• No inbound networking is required

• Outbound networking needs access to the storage account where the settings are stored and

the API URL where Cloudockit is deployed.

• The following 3 environment variables are required:

Name Value

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS or GCP.
Possible values are:

• Azure

• GCP

• AWS

DockerStorageAWSBucketName Enter the name of the Bucket

DockerStorageAWSAccessKeyId Enter the Access Key Id for Full control of the AWS S3 Bucket

DockerStorageAWSSecretAccessKey Enter the Secret Access Key for Full control of the AWS S3 Bucket

DockerStorageUseAwsGov (optional) Specify "True" if you are using Aws Gov Cloud or
"False" otherwise.
If the variable is not present, it’s "False" by default

Set Settings in the settings file

To activate the scheduling, you need to update the settings file from your storage account (in the

cloudockitinternal folder) to specify the URL of your Cloudockit Container:

{

"DockerUrlForSchedulingStarts" : "https://mycloudockitcontainer"

}

This information will be used by Cloudockit Scheduling feature to specify which Web API to call.

INSTALLATION & CONFIGURATION GUIDE 17

Step D (Optional) – Configure Cloudockit Container to support the

creation of Compliance Rules, Tailored Diagrams and Settings

Cloudockit Container supports the creation of new Compliance Rules, new Tailored Diagram and new

Settings.

This feature requires that you deploy an Azure Cosmos DB to save the Compliance Rules and Tailored

Diagrams.

There are two steps required:

• Create (or re-use) an Azure Cosmos DB

• Add environment variables to the Cloudockit Container to specify which Azure Cosmos Database

to use

Create (or re-use) an Azure Cosmos DB

From the Azure Portal, create a new Cosmos DB: (you can skip those steps if you already have a Cosmos

DB that you want to reuse)

• Create a Cosmos DB

INSTALLATION & CONFIGURATION GUIDE 18

• Choose Azure Cosmos DB for NoSQL for the type

Once the Cosmos DB is created, you need to create a new Database named cloudockit :

INSTALLATION & CONFIGURATION GUIDE 19

Configure Cloudockit Container to use the Azure Comos DB

To ensure that the container can connect to the Database, you need to start the container and specify

the following 2 required environment variables:

Name Value

CosmosDb__DatabaseName Enter the name of the Database that you have created in
the previous step (cloudockit in the example)

ConnectionStrings__CosmosDb Azure CosmosDB Connection string

INSTALLATION & CONFIGURATION GUIDE 20

Step E – Understand Cloudockit API Container

Once you have installed the Cloudockit Container, you can navigate to the Container Home Page and

you will see the following screen.

It gives you the option to test the different endpoints offered by Cloudockit API.

Please note that you can do everything from command lines/scripts and not use the interface if you

prefer.

For simplicity of usage, all the endpoint are POST endpoints. Not all settings are mandatory for each

endpoint, and you can refer to that section to see which endpoints require which parameters.

INSTALLATION & CONFIGURATION GUIDE 21

Step F – Test your license

Activate and setup components for your license

Once you get the API Key from Cloudockit team and you have the appropriate credentials for the license

validation, you can check that your API Key is working by using the /CheckLicenseStatus endpoint.

First, navigate to the home page of the container and click on CheckLicenseStatus and Try it now. Then,

replace the following values in the JSON that you are sending to Cloudockit API:

{

 "ApiKey": "API Key provided by Cloudockit Team"

}

Click on Execute.

You should receive the following response body:

INSTALLATION & CONFIGURATION GUIDE 22

Step G – Validate that you can authenticate to the environment that you

want to scan

Once the license validation is successful, you need to test that the authentication to the environment

you want to scan is working.

To do that, you need to use the /TestAuthentication endpoint.

First, you need to ensure that you specify the values from the above Step 2 for license validation.

Then, you need to specify the following additional values:

Name Value

ADKCloudType Azure/AWS/GCP depending on the platform that you
want to scan.

SubscriptionID Id/Alias of the subscription (Azure) or account (AWS)
or project (GCP) that you want to scan.

(for
AWS)

AWSAccessKeyId AWS Access Key

AWSSecretAccessKey AWS Secret Access Key

(for
Azure)

TenantID Tenant name of the Azure Subscription to scan

AppClientIdForAutomation AAD App ID for the scan

AppClientKeyForAutomation AAD App Key for the scan

(for
GCP)

GCPServiceAccountCredentials Content of the JSON Service Credential file

AzureStorageNameForDropOff Do not change the name of the parameter for AWS,
this is also called AzureStorageNameForDropOff
You should specify one of these values:

• the Azure Storage Account Name (it can be the
unique Storage Account name that is in the
same tenant as the subscription that you scan
or the complete Azure Storage Account
Connection String)

• AWS S3 bucket

• GCP Bucket where Cloudockit should store the
documents generated.

Example of Payload for an AWS environment scan:

{

 "ApiKey": "xxxx",

 "AWSAccessKeyId": "XXXX",

 "AWSSecretAccessKey": "8PoBo+4XXXX+/k/MzQ",

 "SubscriptionID": "34XXXX2",

 "AzureStorageNameForDropOff": "XXXdockit",

 "ADKCloudType": "AWS"

}

INSTALLATION & CONFIGURATION GUIDE 23

Example of Payload for an Azure environment scan:

{

 "ApiKey": "xxxx",

 "TenantID": "X2.onmicrosoft.com",

 "AppClientIdForAutomation": "XXXXX",

 "AppClientKeyForAutomation": "mln/XXXXX=",

 "SubscriptionID": "XXX",

 "AzureStorageNameForDropOff": "XXX",

 "ADKCloudType": "Azure"

}

Example of Payload for an GCP environment scan:

{

 "ApiKey": "xxxx",

 "GCPServiceAccountCredentials": {"type":

"service_account","project_id": ""cdkXXXX"",""private_key_id"":

""XXXXX"",""private_key"": ""-----BEGIN PRIVATE KEY-----

"nMIIEvQIXXXXXZGy5PArVQS"n2buDJi0URXCKoeWnukG9Cl0fHlP8rFK6+XXXXXX+kJm0Y

xuFOwxdbgpS1n38mQyez7EK"nObnp9wP05ynOxKXJqJx0r1k="n-----END PRIVATE

KEY-----"n"",""client_email"":

""XXXX@cdkproject1.iam.gserviceaccount.com"",""client_id"":

""XXXXX"",""auth_uri"":

""https://accounts.google.com/o/oauth2/auth"",""token_uri"":

""https://oauth2.googleapis.com/token"",""auth_provider_x509_cert_url""

:

""https://www.googleapis.com/oauth2/v1/certs"",""client_x509_cert_url":

""https://www.googleapis.com/robot/v1/metadata/x509/test-

XXXX.iam.gserviceaccount.com"}, "SubscriptionID": "XXXX",

 "AzureStorageNameForDropOff": "XXXX",

 "ADKCloudType": "GCP"

}

INSTALLATION & CONFIGURATION GUIDE 24

Step H – Test the document generation

Once all the tests above have been done, you can start the document generation.

To do that, you need to use the /StartDocumentGeneration endpoint.

First, you need to ensure that you specify the same values as the above steps for CheckLicenseStatus

and TestAuthentication endpoints.

Then, you need to specify additional values based on the type of document you want to generate and

which option you would like to use.

You get a list of all options from the properties list at the bottom of the screen:

As there are many options that you can provide, we strongly advise that you use Cloudockit Website to

generate the JSON file with the options.

One of the options that is particularly useful in this scenario are the CallbackURL and

CallBackUrlRequired parameters that gives you the ability to be notified once document generation

have been done.

When you hit Execute, you get the state URL of the current document generation:

For Payload example, you can simply re-use the previous ones.

INSTALLATION & CONFIGURATION GUIDE 25

Step I – Manage your document generation

The Cloudockit API offers two endpoints to facilitate the management of document generation.

Please note that for these endpoints, you need to specify an Admin API Key for the ApiKey value.

/ListDocumentGeneration

This will allow you to see which scans are running. It gives you the list of running processes with their

Process ID and State:

/StopDocumentGeneration

This endpoint is used to kill a running document generation.

Name Value

DockerProcessToKill Value of the process ID to kill

It will reply with a confirmation message that the process has been killed.

INSTALLATION & CONFIGURATION GUIDE 26

Annex – Deploy multiple instances of Cloudockit Container

Cloudockit can be deployed in multiple instances in scenarios like this one:

cloudockit

Cloudockit

App Gateway

ingress-nginx-

controller

Cloudockit-pod-

1

Cloudockit-pod-

2

Cloudockit-pod-

3

If you plan to use Cloudockit Container in a multi-pods environment, you need to configure some extra

components. If you plan to use Cloudockit Containers in multiple instances with sticky session (for

example App Services with a Traffic Manager), you do not need those extra components.

Here are the components that you need to configure.

INSTALLATION & CONFIGURATION GUIDE 27

Step 1 – Create / Configure Azure Key Vault

To encrypt the anti-forgery keys used by ASPNETCore, an Azure Key Vault is required. You can create a

new Azure Key vault or reuse an existing one.

Once you have the Azure Key Vault, you need to create a Key named dataprotection

Please ensure that the Key have the following Permitted Operations (by default permissions)

Once you have done that, you need to create an Azure App Registration that will have access to this key.

(you can also reuse the Azure AD App that you have created in the steps to configure Cloudockit Web UI

if you prefer)

To do that, create a new App Registration (leave default settings) and note the Client ID and Client

Secret as you will need that in the next steps.

INSTALLATION & CONFIGURATION GUIDE 28

Go back to the Azure Key Vault and give the Permissions to Unwrap Key / Wrap Key to the App that you

just created

Step 2 – Configure Azure Redis Cache

As sessions can sprawl to multi pods, Azure Redis Cache is required to have consistent cache across all

nodes.

Create a new Azure Cache for Redis (you can also reuse an existing one if you prefer) and select the

Basic CO (250MB Cache) as only small elements will be cached. Ensure that you select a region that is

close to the one where Cloudockit will run for performance optimization.

Once created, take note of the Redis Connection String.

Step 3 – Define the Environment Variables required to run the Cloudockit Container

In addition to the environment variables defined in the step above, you now need to add the following

environment variables.

Name Description Example

DataProtection__EncryptionKeyUrl URL of the key vault Key that you have
created. You need to specify the Full Path
to the key, not only the key vault.

https://cdkcontain
erkeyvault.vault.az
ure.net/keys/data
protection

INSTALLATION & CONFIGURATION GUIDE 29

DataProtection__VaultClientId Id of the Azure AD App that has privileges
to Wrap / Unwrap key

760fb963-57a4-
2303-1450-
1b2dab513854

DataProtection__VaultSecret Secret of the Azure AD App SF7Q~NvuAYKF6.IB
Fjdewdewd

CacheSettings__UseRedis Set to true to use redis instead of
memory cache

true

ConnectionStrings__Redis Connection String to the Redis cdkmultipods.redis
.cache.windows.ne
t:6380,password=x
x=,ssl=True,abortC
onnect=False

For reference, here is a sample yaml file to deploy that configuration

apiVersion: apps/v1

kind: Deployment

metadata:

 name: cloudockit

spec:

 replicas: 4

 selector:

 matchLabels:

 app: cloudockit

 template:

 metadata:

 labels:

 app: cloudockit

 spec:

 containers:

 - name: cloudockit

 image: cdkmultipods.azurecr.io/cdk-web-linux:dev

 ports:

 - containerPort: 80

 env:

 - name: DockerStorageCloudProvider

 value: "Azure"

 - name: "DockerStorageAzureCnxString"

 value:

"DefaultEndpointsProtocol=https;AccountName=cloudockitcontainerdebug;AccountKey=x

xxx==;EndpointSuffix=core.windows.net"

 - name: AzureADTenant

 value: "umaknowdev.onmicrosoft.com"

 - name: AzureADAppID

 value: "9548a025-xxxx"

INSTALLATION & CONFIGURATION GUIDE 30

 - name: AzureADAppKey

 value: "W6UXfqC~xxxx"

 - name: Data__ProtectionEncryptionKeyUrl

 value:

"https://cdkcontainerkeyvault.vault.azure.net/keys/dataprotection"

 - name: DataProtection__VaultClientId

 value: "760fb9xxxx"

 - name: DataProtection__VaultSecret

 value: "VSF7xxxx"

 - name: CacheSettings__UseRedis

 value: "true"

 - name: ConnectionStrings__Redis

 value:

"cdkmultipods.redis.cache.windows.net:6380,password=xxxxk9g=,ssl=True,abortConnec

t=False"

 - name: APPINSIGHTS_INSTRUMENTATIONKEY

 value: "c07069xxxx"

 - name: TriggerDeployCount

 value: "5"

apiVersion: v1

kind: Service

metadata:

 name: cloudockit

spec:

 type: ClusterIP

 ports:

 - port: 80

 selector:

 app: cloudockit

INSTALLATION & CONFIGURATION GUIDE 31

Annex - AWS Container use-cases

Introduction

This annex describes the different use-cases currently available for Cloudockit Container,

covering the API and the WebUI host modes, for scenarios such as scanning multiple accounts,

using roles, keys, optional drop-off storage. The setups required at the Cloud platform level are

listed for each use-case.

AWS ECS Container

To run Cloudockit Container in AWS, the ECS container should already be setup.

A – Scanning multiple AWS accounts using Cross-Account role
Using Cloudockit Container API, it is possible to scan multiple accounts using the Cross-Account Role
functionality.
The objective is to give the possibility to a user located in the source account to scan other AWS
accounts, by assigning that user a role allowing them to access the target account(s) in read-only mode.
In the following example, ECS Task ‘’EcsTask” located in the source account with account ID “AccountA”
wants to scan the resources in the target accounts with account IDs “AccountB”, “AccountC”, etc.

a. Setup in AWS Console for the role to scan multiple accounts

1. Create a role to attach to the ECS Task Definition running Cloudockit.

In the source account where the ECS is running Cloudockit, go to the IAM service, create a new role
named (for example) : EcsTaskRoleForCdk

• Permissions : Attach the following permission policies
o EcsCanAssumeAnyRole (Customer Managed)

Create a new permission policy named EcsCanAssumeAnyRole with the following JSON:

{

"Version": "2012-10-17",

"Statement": {

"Effect": "Allow",

"Action": "sts:AssumeRole",

"Resource": "*"

}

}

• Trusted entities : Attach the following Trust Relationship JSON in the role’s trusted entities

INSTALLATION & CONFIGURATION GUIDE 32

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"Service": "ecs-tasks.amazonaws.com"

},

"Action": "sts:AssumeRole"

}

]

}

• In the “EcsTask” Task Definition creation process, attach the created role to the ECS Task
Definition (select it in the ECS Task Definition, in dropdown ‘’Task Role”).

2. Create the Multi-Account scan role

In this step we need to define the role which is going to be used in the API to scan all the accounts.

Make sure you have the following setup in every account to scan (source and targets).

• Create a new role named (for example) : MultiAccountScanRole

• Permissions : Attach the following permission policies to MultiAccountScanRole
o ReadOnlyAccess (AWS managed - job function)
o CdkS3BucketAccessPolicy (Customer Managed)

Create a new permission policy named CdkS3BucketAccessPolicy with the following
JSON:

{

"Version": "2012-10-17",

"Statement": [{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": [

"s3:GetBucketLocation",

"s3:GetObject",

"s3:ListBucket",

"s3:PutBucketCORS",

"s3:PutObject",

"s3:DeleteObject"

],

"Resource": [

"arn:aws:s3:::*",

"arn:aws:s3:::*/*"

]

}

]

}

INSTALLATION & CONFIGURATION GUIDE 33

• Trusted entities :
MultiAccountScanRole needs to know the calling entity, which includes the source account id

(AccountA) of the calling role, and the role name, which is EcsTaskRoleForCdk.

To do that, attach the following Trust Relationship JSON in the role’s Trusted entities.

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"AWS": [

"arn:aws:iam::AccountA:role/EcsTaskRoleForCdk"

]

},

"Action": "sts:AssumeRole",

"Condition": {}

}]

}

b. Setup for the API Settings to use

In the Cloudockit API, in the ‘’StartDocumentGeneration” tab, make sure to set the following settings :

• Settings defining the accounts to scan :

"SubscriptionId" : "AccountA"

"AWSRoleToAssume" : "MultiAccountScanRole"

"SelectedSubscriptionsIds": [

"AccountA",

"AccountB",

"AccountC"

]

• To drop-off the generated documents in the S3 bucket located in "AccountA":
"AzureStorageNameForDropOff": "NameOfYourS3BucketInAccountA"

• To drop-off the generated documents in the S3 bucket located in another account (in
"AccountB" for example):

"AzureStorageNameForDropOff":

"arn:aws:s3::AccountB:NameOfYourS3BucketInAccountB"

• To have the information of all scanned accounts displayed in the same document :
"GenerateSingleDocForAllSubscriptions": true

Otherwise, by default, the documents will be dropped in the storage account you specify, with a
different folder for each account.

B – Using the container with the ECS Task Role instead of IAM user keys
If you don’t want to use AccessKeyID/SecretAccessKey when setting up your container, you can use the

ECS Task Role assigned to your container.

INSTALLATION & CONFIGURATION GUIDE 34

When creating the Task Definition, instead of setting the Environment Variables

DockerStorageAWSAccessKeyId and DockerStorageAWSSecretAccessKey

You can set the Environment Variable :

DockerStorageUseAwsRole = True

Using this option has the following impact :

• The container will access the default container storage (the storage containing the container

license file) using the ECS Task role assigned to the container. This will be mainly used for

validating the license, reading the user settings file, and getting the saved schedules.

• The scan will still be performed using either the Keys or Role To Assume authentication options :

o API Settings : AccessKeyID/SecretAccessKey

o API Settings : AWSRoleToAssume. You can use any role with ReadOnlyAccess Policy

(including the role assigned to the ECS if you want).

If you choose the AWSRoleToAssume option, you should still enter random values for

the AccessKeyID/SecretAccessKey variables, it’s a front-end validation glitch that will be

fixed in the future.

a. Setup in AWS Console for the ECS Task Role

The ECS Task Role needs to be created with the following permissions :

• Create a new role named (for example) : EcsTaskRoleContainerIdentity

• Permissions : Attach the following permission policies to EcsTaskRoleContainerIdentity
o ReadOnlyAccess (AWS managed - job function) (necessary if you want to scan your

environment using this role)
o CdkS3BucketAccessPolicy (Customer Managed)

Create a new permission policy named CdkS3BucketAccessPolicy with the following
JSON:

INSTALLATION & CONFIGURATION GUIDE 35

{

"Version": "2012-10-17",

"Statement": [{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": [

"s3:GetBucketLocation",

"s3:GetObject",

"s3:ListBucket",

"s3:PutBucketCORS",

"s3:PutObject",

"s3:DeleteObject"

],

"Resource": [

"arn:aws:s3:::*",

"arn:aws:s3:::*/*"

]

}]

}

o AllowEcsDescribeTask (Customer Managed)
Create a new permission policy named AllowEcsDescribeTask with the following JSON:

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Action": [

"ecs:DescribeTasks",

"ecs:DescribeTaskDefinition"

],

"Resource": "*"

}]

}

o EcsCanAssumeAnyRole (Customer Managed)
Create a new permission policy named EcsCanAssumeAnyRole with the following JSON:

{

"Version": "2012-10-17",

"Statement": {

"Effect": "Allow",

"Action": "sts:AssumeRole",

"Resource": "*"

}

}

INSTALLATION & CONFIGURATION GUIDE 36

• Trusted entities : attach the following Trust Relationship JSON in the role’s trusted entities

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"AWS":

"arn:aws:iam::AccountA:role/EcsTaskRoleContainerIdentity",

"Service": "ecs-tasks.amazonaws.com"

},

"Action": "sts:AssumeRole"

}]

}

C – Running a scheduled scan in AWS using ECS container.
In this example, we want to run a scheduled scan from within our AWS environment. The container

scheduler (the small container triggering the scheduled scans) and the container running the scan are

both hosted in AWS.

a. Saving the schedule

The schedule is saved using the Web Interface (Container WebUI), we need to add the Environment

Variable referring to the AWS container default S3 bucket which will now contain the saved schedules.

The 2 following steps are necessary if you are using the Container WebUI interface running in Azure to

save the schedule.

1. Set the Environment Variable

• Go to a previously setup container in Azure (App service) or setup a new one (ref.

ContainerGuide_Azure)

• In the corresponding App Service

o left panel ➔ section Settings

o Configuration

o Click on + New application setting

▪ Name : DockerStorageNameForAWSScheduler

▪ Value : NameOfYourS3Bucket (write the name of the AWS container default S3

Bucket which contains the license file for the container running AWS)

o Save

2. Save the AWS Schedule

Start your Azure Web App, follow the login steps and save the schedule.

• Sign in with Azure AD

• Select ‘’AWS’’, and enter the Access Key ID & Secret Access Key, log in.

• Once logged-in, set the settings you want for your schedule (make sure the IAM user with the

logged-in AccessKeyID/SecretAccessKey have read access to the target account to scan)

INSTALLATION & CONFIGURATION GUIDE 37

• Drop-off tab : Your Storage : enter the name of any S3 bucket where you want your documents

to be dropped-off (accessible with the logged-in credentials) and validate.

• Scheduling tab :

o In the Schedules drop-down, select ‘’Add new schedule…”

o Enter the Schedule’s Name & CRON (copy/paste CRON expression from

http://www.cronmaker.com)

o Enter the API Key used for the AWS Container (corresponding to the license found in the

default S3 bucket)

o Save Schedule

Your schedule file is now saved in your AWS Container default S3 bucket.

3. Run the schedule in AWS

In this final step, we are going to set the container scheduler in AWS (to trigger the scans) and have the

scan executed with the container set up in AWS as well.

3.1. Set you container scheduler

• Create a new task definition/revision for the container scheduler.

In this example we will create a new Task Definition EcsSchedulerUsingKeys for the container

scheduler, using AccessKeyID/SecretAccessKey environment variables (you can also set it with ECS

Task Role instead of the keys, ref. Use-case B)

Launch Type : AWS Fargate | OS : Linux/X86_64

Task size : 1 vCPU & 2GB Memory

Task Roles

• For the ECS Task Role, attach a role (EcsSchedulerRole) with the following custom policies :

o EcsCanAssumeAnyRole (Customer Managed) (ref. previous uses-cases)

o CdkS3ReadAccessPolicy (Customer Managed)

http://www.cronmaker.com/

INSTALLATION & CONFIGURATION GUIDE 38

{

"Version": "2012-10-17",

"Statement": [{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": [

"s3:GetBucketLocation",

"s3:GetObject",

"s3:ListBucket",

"s3:PutBucketCORS"

],

"Resource": [

"arn:aws:s3:::*",

"arn:aws:s3:::*/*"

]}

]

}

The following Trust relationships :

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"Service": "ecs-tasks.amazonaws.com"

},

"Action": "sts:AssumeRole"

}]

}

• For the Task Execution Role, attach a role with the necessary permissions to access your secret

manager to retrieve the secrets required to download the Cloudockit Container image (as

described in ContainerGuide_AWS) and to write the container logs (in order to display any

errors/warnings and to monitor the state of the schedules running).

Permissions - Policies to attach :

o CloudWatchLogsFullAccess (AWS Managed)

o GetMyRegistrySecretPolicy (Customer Managed)

INSTALLATION & CONFIGURATION GUIDE 39

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Action": [

"secretsmanager:GetSecretValue"

],

"Resource": [

"ArnOfYourSecretFoundInSecretsManager"

]

}

]

}

The following Trust relationships :

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"Service": "ecs-tasks.amazonaws.com"

},

"Action": "sts:AssumeRole"

}

]

}

Container details

Set the name, and the Image URI for the scheduler container image (URI ends with cdk-scheduler-

linux:latest), and enable Private registry authentication.

Environment Variables
Add the following Environment Variables :

• DockerStorageCloudProvider : AWS

• DockerStorageAWSBucketName : NameOfYourContainerDefaultS3Bucket (same as
DockerStorageNameForAWSScheduler set in 1. Set the Environment Variable)

• DockerUrlForSchedulingStarts : URL of the AWS container running the scan (API Host –
e.g http://57.137.30.170/) – if this Environment Variable is not assigned in this step, it should
be set in the settings.json file found in the S3 bucket next to the license.json file.

http://57.137.30.170/

INSTALLATION & CONFIGURATION GUIDE 40

To allow the container scheduler to access the storage, you can either use IAM user access keys, OR the

ECS Task Role to access the storage account containing the schedules :

To use the IAM user access keys :

• DockerStorageAWSAccessKeyId : Access Key ID of the IAM user
• DockerStorageAWSSecretAccessKey : Secret Access Key of the IAM user

To use the IAM Role assigned to the ECS Task (Task Role) :

• DockerStorageUseAwsRole : True

In the case of using the IAM Role, the ECS Task Role previously created also needs to have the following

permission policy attached :

o AllowEcsDescribeTask (Customer Managed) (ref. a. Setup in AWS Console for the ECS

Task Role)

Modify the Trust relationship to add the ECS Task role’s arn in the Principal. It should look like this :

{

"Version": "2012-10-17",

"Statement": [{

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::YourAccountId:role/EcsTaskRole",

"Service": "ecs-tasks.amazonaws.com"

},

"Action": "sts:AssumeRole"

}]

}

Logging
In the Logging section, Enable “Use log collection”, use ‘’Amazon CloudWatch”.

The container will automatically create a log group and write the logs.

Once the task definition is created, you can deploy and run it in your cluster.

Monitor the container logs to see the status of the scan (In the running scheduler’s container -> tab

‘’Logs”)

INSTALLATION & CONFIGURATION GUIDE 41

Annex – Troubleshooting

Here are resolutions to common cases and how you can help find errors in Cloudockit Container.

• If you activate Cloudockit Container Web UI and noticed that in the upper right corner you have

a Welcome message without your name, please check the AAD Credentials in the settings file

• If you are using Private endpoint for your App Service and Storage, please ensure that you

activate vNET integration so that the App Service can communicate with the Storage Account

• You can specify an environment variable in your container named AppInsightKey that contains

an Azure App Insight Instrumentation key so that you can see the logs.

• You can use the -logs.txt file in the storage that you have specified to see what is happening

during document generation.

• If you get an error when the document generation starts, please ensure that you have Write

privileges to your storage account

• If you see the message that the document generation is starting but do not see any progress,

please verify that you have a CORS rule for GET Verb and origin that is your Cloudockit container

website (should be done automatically).

• If you get an exception when starting the container that says “APPCMD failed with error code

87”, check that the variables that you are providing do not contain quotes.

