

`

AZURE - INSTALLATION &

CONFIGURATION GUIDE

GENERATED BY:

GENERATED BY:

INSTALLATION & CONFIGURATION GUIDE 2

Contents

Introduction .. 3

Requirements .. 5

Step A – Deploy Cloudockit Container .. 6

Step 1 – Create a Storage Account and upload the license file. ... 6

Step 2 – Create your container environment and start your container. .. 7

Step B (Optional) – Configure Cloudockit Web UI .. 9

Step C (Optional) – Configure Cloudockit Container to support Scheduling. ... 14

Start Cloudockit Scheduler Container ... 14

Set Settings in the settings file .. 14

Step D (Optional) – Configure Cloudockit Container to save custom changes ... 15

Create (or re-use) an Azure Cosmos DB .. 15

Configure Cloudockit Container to use the Azure Comos DB ... 17

Step E – Understand Cloudockit API Container .. 18

Step F – Test your license.. 19

Activate and setup components for your license ... 19

Step G – Validate that you can authenticate to the environment that you want to scan 20

Step H – Test the document generation ... 22

Step I – Manage your document generation .. 23

/ListDocumentGeneration .. 23

/StopDocumentGeneration .. 23

Annex – Deploy multiple instances of Cloudockit Container.. 24

Step 1 – Create / Configure Azure Key Vault .. 25

Step 2 – Configure Azure Redis Cache .. 26

Step 3 – Define the Environment Variables required to run the Cloudockit Container 26

Annex – Troubleshooting .. 29

INSTALLATION & CONFIGURATION GUIDE 3

Introduction

The purpose of this document is to provide the detailed steps to run and configure Cloudockit Docker

container images.

There are two types of images that you should run:

• cdk-web-linux that contains the Cloudockit API/Web interface. This is mandatory to run this

container.

• cdk-scheduler-linux that contains the Cloudockit Scheduling features. This is an optional

container you do not need to install if you do not want to use schedules.

The cdk-web image contains the Cloudockit API that you can call from your CI/CD processes or any other

process / scenario which fits your business needs.

In addition to the API, we have integrated the complete Cloudockit Web UI in the image so that you can

get all the features that you are accustomed to.

Cloudockit Docker container images provides you a way to run Cloudockit into your own isolated Cloud

environment and gives you the exact same features as Cloudockit Website and Cloudockit Desktop.

Here is the high-level overview of the solution :

The following hosting environments are currently supported:

• Web App for Containers on Azure - Recommended

• ECS (Elastic Container Services) on AWS

• ACI (Azure Container Instance) on Azure

• GKE (Google Kubernetes Engine) on GCP

A few important things to note:

• These configurations are for the hosting of the container, not for the environment that you scan

which means that you can scan a GCP project using the Cloudockit Container API even if the

container runs on Azure.

INSTALLATION & CONFIGURATION GUIDE 4

• Depending on the hosting option that you choose, there could be some limitations. Those

limitations are related to the hosting option and not the Cloudockit Container itself.

• The current document does not detail networking configuration like isolation/https setup as this

is highly dependent on your internal setup.

• Container is currently designed to have one node running which should be more than enough to

generate all the documents you need.

• For production environment, we recommend 4vCPU + 8 Gb RAM

• Cloudockit Web UI only supports Azure AD as SSO authentication. If you do not set it up, you will

only be able to access the API portion.

The following sections contain the different steps to deploy the Cloudockit Docker container image on

the Azure Platform.

Here is an overview of the different steps you must do to deploy Cloudockit Container:

Step A - Deploy Cloudockit Container

• This Step is subdivided in 4 different steps

• Those steps have been scripted to ease the deployment process so we
strongly advise to use the scripted approach

Step B (Optional) - Activate Cloudockit Container UI

• Create an Azure AD Application

Step C (Optional) - Activate the Scheduling feature (cdk-
scheduler)

• Set the appropriate settings to activate scheduling

Step D ... - Do some tests

• Test the license validity

• Start some documentation

INSTALLATION & CONFIGURATION GUIDE 5

Requirements

To install Cloudockit Container in your environment, you will need:

• A Storage Account

• An App Service or an Azure Container Instance to run the Container.

• (Optional) An Azure Active Directory Application if you want to activate Cloudockit Container

Web UI

Important note

We highly recommend that you use the script (based on Azure CLI) provided by Cloudockit
Team to provision the Cloudockit Container.

INSTALLATION & CONFIGURATION GUIDE 6

Step A – Deploy Cloudockit Container

Step 1 – Create a Storage Account and upload the license file.

To run Cloudockit Container, you need to have a Storage Account that will be used to store information

(license file, settings…). As the license file is linked to this Storage Account, you need to choose a Storage

Account Name (short name like yourcompanycloudockit) and send that name to Cloudockit Support

Team (support@cloudockit.com) so that they generate a license file.

Once you receive your license file, you can upload the license file into a file named

cloudockitinternal/license.json in the container.

Please note that the Json license file is tied to the storage account name so you need to create/use a

storage account with a name that matches the name provided to Cloudockit Support Team.

Important note

Ensure that the Storage Account exists in your environment before sending it to the
Cloudockit Support Team.

The Json license file that you’ll upload to your storage will be read by your Cloudockit Container when

you start it. You will need to specify an Environment Variable / App Settings named

DockerStorageAzureCnxString that will store a complete connection string to the storage account (cf.

section below).

mailto:support@cloudockit.com

INSTALLATION & CONFIGURATION GUIDE 7

Step 2 – Create your container environment and start your container.

Once you have created your Storage Account, you need to create your container environment and start

the container.

First, create a new Web App for Containers instance:

Ensure that you have selected Docker Container and Linux for the Operating System.

Then create a new App Service Plan:

INSTALLATION & CONFIGURATION GUIDE 8

Then, in the Docker Tab, select Private Registry and enter the following information:

Name Value

Server URL https://cloudockitcontainerregistry.azurecr.io

User Name User provided by Cloudockit Team

Password Password provided by Cloudockit Team

Image and Tag cloudockitcontainerregistry.azurecr.io/cdk-web-linux:latest (linux)

Startup Command Leave empty

Then, click on Review+Create and proceed.

Once done, you need to navigate to the Application Settings of the App Service that you have created

and enter the following values:

Name Value

WEBSITE_MEMORY_LIMIT_MB Amount of RAM (in MB) that you have in your App Service Plan
(1 GB is 1024)
Minimum value is 2048, recommended value is 4096

AppInsightKey (optional) An Azure App Insight Instrumentation Key for advanced login

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS or GCP.
Possible values are:

• Azure

• GCP

• AWS

DockerStorageAzureCnxString Enter the complete connection string (Full access) of the Storage
Account.

AuthenticationEndPoint (optional) Specify if you want to use a different Azure endpoint.
Possible values are:

• gov

• de

• cn
Leave empty for default endpoint (Global).

INSTALLATION & CONFIGURATION GUIDE 9

Step B (Optional) – Configure Cloudockit Web UI

Cloudockit Container supports a Web UI that allows users to authenticate by using Azure AD or Azure

User Authentication.

This Web UI supports Azure Active Directory as a first step to authenticate users.

Once connected, you will be able to connect to Azure, AWS and GCP using Service Accounts (Azure AD

App, GCP Service Credentials, AWS Access Keys).

To activate Azure AD Authentication, you need to follow these steps:

• Go to your Azure Active Directory

• Click on App Registration and then click New Registration

• Enter a Name (any name you want) and select Single Tenant

• Enter the following redirect URIs (reply url):
o https://<AppSvcName>.azurewebsites.net/LogIntoAzure/CatchCodeAzure

o https://<AppSvcName>.azurewebsites.net/LogIntoCDKWithAAD/CatchCode

where AppSvcName is the name of your App Service

INSTALLATION & CONFIGURATION GUIDE 10

Note: the interface will not let you enter the 2nd URL before clicking on Register so you’ll have to enter it

after registration, in the Authentication page:

INSTALLATION & CONFIGURATION GUIDE 11

Then, go to API Permissions, click on +Add a permission and select :

- Microsoft Graph, then Delegated permissions and then select User.Read:

- Azure Service Management, then Delegated permissions and then select user_impersonation:

INSTALLATION & CONFIGURATION GUIDE 12

Click Add permissions. You should now see the following :

Then, click on Grant Admin consent for Default Directory (if you don’t have the permissions to click on

Grant admin consent, please contact your IT admin to do it for you):

INSTALLATION & CONFIGURATION GUIDE 13

Then, take note of the client ID from the Overview tab and then go to Certificates & Secrets and

generate a new Client Secret, take note of it.

Update the settings file from your storage account (in the cloudockitinternal folder) with the value of

the previously created Azure AD Application:

{

"AzureADTenant": "mytenant.onmicrosoft.com",

"AzureADAppID": "zzzzz",

"AzureADAppKey": "zzzzz"

}

INSTALLATION & CONFIGURATION GUIDE 14

Step C (Optional) – Configure Cloudockit Container to support

Scheduling.

Cloudockit Container supports the creation of new Tailored Documents, new Tailored Diagrams, new

Compliance Rules and new Settings, along with the possibility to create your own Report templates.

To activate scheduling, you need to spin-up a new container based on the cloudockitscheduler image

and set the appropriate settings in your settings file.

Start Cloudockit Scheduler Container

You need to follow the same procedure as you did in the previous step to spin up a new Scheduling

container. You need to use the cloudockitscheduler image. This scheduler is basically reading the

schedules files created from the UI and calling the API according to the schedule.

Here are the settings for the container:

• CPU : 1+

• RAM : 1.5GB+

• No inbound networking is required

• Outbound networking needs access to the storage account where the settings are stored and

the API URL where Cloudockit is deployed.

• The following 3 environment variables are required:

Name Value

DockerStorageCloudProvider Specify if your Storage Account is stored in Azure, AWS or GCP.
Possible values are:

• Azure (select this value)

• GCP

• AWS

DockerStorageAzureCnxString Enter the complete connection string (Full access) of the Storage
Account.

DockerUrlForSchedulingStarts Enter the URL of your API that hosts Cloudockit like:
https://testcdkapi.azurewebsites.net/

Set Settings in the settings file

To activate the scheduling, you need to update the settings file from your storage account (in the

cloudockitinternal folder) to specify the URL of your Cloudockit Container:

{

"DockerUrlForSchedulingStarts" : "https://mycloudockitcontainer"

}

This information will be used by Cloudockit Scheduling feature to specify which Web API to call.

Note: the Scheduling menu will only appear in the interface if you login with an App Registration.

INSTALLATION & CONFIGURATION GUIDE 15

Step D (Optional) – Configure Cloudockit Container to save custom

changes

Cloudockit Container supports the creation of new Tailored Documents, new Tailored Diagrams, new

Compliance Rules and new Settings, along with the possibility to create your own Report templates.

This feature requires that you deploy an Azure Cosmos DB to save your customized templates and

settings.

There are two steps required:

• Create (or re-use) an Azure Cosmos DB

• Add environment variables to the Cloudockit Container to specify which Azure Cosmos Database

to use

Create (or re-use) an Azure Cosmos DB

From the Azure Portal, create a new Cosmos DB: (you can skip those steps if you already have a Cosmos

DB that you want to reuse)

• Create a Cosmos DB

INSTALLATION & CONFIGURATION GUIDE 16

• Choose Azure Cosmos DB for NoSQL for the type

Once the Cosmos DB is created, you need to create a new Database named cloudockit :

INSTALLATION & CONFIGURATION GUIDE 17

Configure Cloudockit Container to use the Azure Comos DB

To ensure that the container can connect to the Database, you need to start the container and specify

the following 2 required environment variables:

Name Value

CosmosDb__DatabaseName Enter the name of the Database that you have created in
the previous step (cloudockit in the example)

ConnectionStrings__CosmosDb Azure CosmosDB Connection string

INSTALLATION & CONFIGURATION GUIDE 18

Step E – Understand Cloudockit API Container

Once you have installed the Cloudockit Container, you can navigate to the Container Home Page and

you will see the following screen.

It gives you the option to test the different endpoints offered by Cloudockit API.

Please note that you can do everything from command lines/scripts and not use the interface if you

prefer.

For simplicity of usage, all the endpoint are POST endpoints. Not all settings are mandatory for each

endpoint and you can refer to that section to see which endpoints require which parameters.

INSTALLATION & CONFIGURATION GUIDE 19

Step F – Test your license

Activate and setup components for your license

Once you get the API Key from Cloudockit team and you have the appropriate credentials for the license

validation, you can check that your API Key is working by using the /CheckLicenseStatus endpoint.

First, navigate to the home page of the container and click on CheckLicenseStatus and Try it now. Then,

replace the following values in the JSON that you are sending to Cloudockit API:

{

 "ApiKey": "API Key provided by Cloudockit Team"

}

Click on Execute.

You should receive the following response body:

INSTALLATION & CONFIGURATION GUIDE 20

Step G – Validate that you can authenticate to the environment that you

want to scan

Once the license validation is successful, you need to test that the authentication to the environment

you want to scan is working.

To do that, you need to use the /TestAuthentication endpoint.

First, you need to ensure that you specify the values from the above Step 2 for license validation.

Then, you need to specify the following additional values:

Name Value

ADKCloudType Azure/AWS/GCP depending on the platform that you
want to scan.

SubscriptionID Id/Alias of the subscription (Azure) or account (AWS)
or project (GCP) that you want to scan.

(for
AWS)

AWSAccessKeyId AWS Access Key

AWSSecretAccessKey AWS Secret Access Key

(for
Azure)

TenantID Tenant name of the Azure Subscription to scan

AppClientIdForAutomation AAD App ID for the scan

AppClientKeyForAutomation AAD App Key for the scan

(for
GCP)

GCPServiceAccountCredentials Content of the JSON Service Credential file

AzureStorageNameForDropOff Do not change the name of the parameter for AWS,
this is also called AzureStorageNameForDropOff

You should specify one of these values:

• the Azure Storage Account Name (it can be the
unique Storage Account name that is in the same
tenant as the subscription that you scan or the
complete Azure Storage Account Connection String)

• AWS S3 bucket

• GCP Bucket where Cloudockit should store the
documents generated.

Example of Payload for an AWS environment scan:

{

 "ApiKey": "xxxx",

 "AWSAccessKeyId": "XXXX",

 "AWSSecretAccessKey": "8PoBo+4XXXX+/k/MzQ",

INSTALLATION & CONFIGURATION GUIDE 21

 "SubscriptionID": "34XXXX2",

 "AzureStorageNameForDropOff": "XXXdockit",

 "ADKCloudType": "AWS"

}

Example of Payload for an Azure environment scan:

{

 "ApiKey": "xxxx",

 "TenantID": "X2.onmicrosoft.com",

 "AppClientIdForAutomation": "XXXXX",

 "AppClientKeyForAutomation": "mln/XXXXX=",

 "SubscriptionID": "XXX",

 "AzureStorageNameForDropOff": "XXX",

 "ADKCloudType": "Azure"

}

Example of Payload for an GCP environment scan:

{

 "ApiKey": "xxxx",

 "GCPServiceAccountCredentials": {"type":

"service_account","project_id": ""cdkXXXX"",""private_key_id"":

""XXXXX"",""private_key"": ""-----BEGIN PRIVATE KEY-----

"nMIIEvQIXXXXXZGy5PArVQS"n2buDJi0URXCKoeWnukG9Cl0fHlP8rFK6+XXXXXX+kJm0Y

xuFOwxdbgpS1n38mQyez7EK"nObnp9wP05ynOxKXJqJx0r1k="n-----END PRIVATE

KEY-----"n"",""client_email"":

""XXXX@cdkproject1.iam.gserviceaccount.com"",""client_id"":

""XXXXX"",""auth_uri"":

""https://accounts.google.com/o/oauth2/auth"",""token_uri"":

""https://oauth2.googleapis.com/token"",""auth_provider_x509_cert_url""

:

""https://www.googleapis.com/oauth2/v1/certs"",""client_x509_cert_url":

""https://www.googleapis.com/robot/v1/metadata/x509/test-

XXXX.iam.gserviceaccount.com"}, "SubscriptionID": "XXXX",

 "AzureStorageNameForDropOff": "XXXX",

 "ADKCloudType": "GCP"

}

INSTALLATION & CONFIGURATION GUIDE 22

Step H – Test the document generation

Once all the tests above have been done, you can start the document generation.

To do that, you need to use the /StartDocumentGeneration endpoint.

First, you need to ensure that you specify the same values as the above steps for CheckLicenseStatus

and TestAuthentication endpoints.

Then, you need to specify additional values based on the type of document you want to generate and

which option you would like to use.

You get a list of all options from the properties list at the bottom of the screen:

As there are many options that you can provide, we strongly advise that you use Cloudockit Website to

generate the JSON file with the options.

One of the options that is particularly useful in this scenario are the CallbackURL and

CallBackUrlRequired parameters that gives you the ability to be notified once document generation

have been done.

When you hit Execute, you get the state URL of the current document generation:

For Payload example, you can simply re-use the previous ones.

INSTALLATION & CONFIGURATION GUIDE 23

Step I – Manage your document generation

The Cloudockit API offers two endpoints to facilitate the management of document generation.

Please note that for these endpoints, you need to specify an Admin API Key for the ApiKey value.

/ListDocumentGeneration

This will allow you to see which scans are running. It gives you the list of running processes with their

Process ID and State:

/StopDocumentGeneration

This endpoint is used to kill a running document generation.

Name Value

DockerProcessToKill Value of the process ID to kill

It will reply with a confirmation message that the process has been killed.

INSTALLATION & CONFIGURATION GUIDE 24

Annex – Deploy multiple instances of Cloudockit Container

Cloudockit can be deployed in multiple instances in scenarios like this one:

cloudockit

Cloudockit

App Gateway

ingress-nginx-

controller

Cloudockit-pod-

1

Cloudockit-pod-

2

Cloudockit-pod-

3

If you plan to use Cloudockit Container in a multi-pods environment, you need to configure some extra

components. If you plan to use Cloudockit Containers in multiple instances with sticky session (for

example App Services with a Traffic Manager), you do not need those extra components.

Here are the components that you need to configure.

INSTALLATION & CONFIGURATION GUIDE 25

Step 1 – Create / Configure Azure Key Vault

To encrypt the anti-forgery keys used by ASPNETCore, an Azure Key Vault is required. You can create a

new Azure Key vault or reuse an existing one.

Once you have the Azure Key Vault, you need to create a Key named dataprotection

Please ensure that the Key have the following Permitted Operations (by default permissions)

Once you have done that, you need to create an Azure App Registration that will have access to this key.

(you can also reuse the Azure AD App that you have created in the steps to configure Cloudockit Web UI

if you prefer)

To do that, create a new App Registration (leave default settings) and note the Client ID and Client

Secret as you will need that in the next steps.

INSTALLATION & CONFIGURATION GUIDE 26

Go back to the Azure Key Vault and give the Permissions to Unwrap Key / Wrap Key to the App that you

just created

Step 2 – Configure Azure Redis Cache

As sessions can sprawl to multi pods, Azure Redis Cache is required to have consistent cache across all

nodes.

Create a new Azure Cache for Redis (you can also reuse an existing one if you prefer) and select the

Basic CO (250MB Cache) as only small elements will be cached. Ensure that you select a region that is

close to the one where Cloudockit will run for performance optimization.

Once created, take note of the Redis Connection String.

Step 3 – Define the Environment Variables required to run the Cloudockit Container

In addition to the environment variables defined in the step above, you now need to add the following

environment variables.

Name Description Example

DataProtection__EncryptionKeyUrl URL of the key vault Key that you have
created. You need to specify the Full Path
to the key, not only the key vault.

https://cdkcontain
erkeyvault.vault.az
ure.net/keys/data
protection

DataProtection__VaultClientId Id of the Azure AD App that has privileges
to Wrap / Unwrap key

760fb963-57a4-
2303-1450-
1b2dab513854

INSTALLATION & CONFIGURATION GUIDE 27

DataProtection__VaultSecret Secret of the Azure AD App SF7Q~NvuAYKF6.IB
Fjdewdewd

CacheSettings__UseRedis Set to true to use redis instead of
memory cache

true

ConnectionStrings__Redis Connection String to the Redis cdkmultipods.redis
.cache.windows.ne
t:6380,password=x
x=,ssl=True,abortC
onnect=False

For reference, here is a sample yaml file to deploy that configuration

apiVersion: apps/v1

kind: Deployment

metadata:

 name: cloudockit

spec:

 replicas: 4

 selector:

 matchLabels:

 app: cloudockit

 template:

 metadata:

 labels:

 app: cloudockit

 spec:

 containers:

 - name: cloudockit

 image: cdkmultipods.azurecr.io/cdk-web-linux:dev

 ports:

 - containerPort: 80

 env:

 - name: DockerStorageCloudProvider

 value: "Azure"

 - name: "DockerStorageAzureCnxString"

 value:

"DefaultEndpointsProtocol=https;AccountName=cloudockitcontainerdebug;AccountKey=x

xxx==;EndpointSuffix=core.windows.net"

 - name: AzureADTenant

 value: "umaknowdev.onmicrosoft.com"

 - name: AzureADAppID

 value: "9548a025-xxxx"

 - name: AzureADAppKey

 value: "W6UXfqC~xxxx"

 - name: Data__ProtectionEncryptionKeyUrl

INSTALLATION & CONFIGURATION GUIDE 28

 value:

"https://cdkcontainerkeyvault.vault.azure.net/keys/dataprotection"

 - name: DataProtection__VaultClientId

 value: "760fb9xxxx"

 - name: DataProtection__VaultSecret

 value: "VSF7xxxx"

 - name: CacheSettings__UseRedis

 value: "true"

 - name: ConnectionStrings__Redis

 value:

"cdkmultipods.redis.cache.windows.net:6380,password=xxxxk9g=,ssl=True,abortConnec

t=False"

 - name: APPINSIGHTS_INSTRUMENTATIONKEY

 value: "c07069xxxx"

 - name: TriggerDeployCount

 value: "5"

apiVersion: v1

kind: Service

metadata:

 name: cloudockit

spec:

 type: ClusterIP

 ports:

 - port: 80

 selector:

 app: cloudockit

INSTALLATION & CONFIGURATION GUIDE 29

Annex – Troubleshooting

Here are resolutions to common cases and how you can help find errors in Cloudockit Container.

• If you activate Cloudockit Container Web UI and noticed that in the upper right corner you have

a Welcome message without your name, please check the AAD Credentials in the settings file

• If you are using Private endpoint for your App Service and Storage, please ensure that you

activate vNET integration so that the App Service can communicate with the Storage Account

• You can specify an environment variable in your container named AppInsightKey that contains

an Azure App Insight Instrumentation key so that you can see the logs.

• You can use the -logs.txt file in the storage that you have specified to see what is happening

during document generation.

• If you get an error when the document generation starts, please ensure that you have Write

privileges to your storage account

• If you see the message that the document generation is starting but do not see any progress,

please verify that you have a CORS rule for GET Verb and origin that is your Cloudockit container

website (should be done automatically).

• If you get an exception when starting the container that says “APPCMD failed with error code

87”, check that the variables that you are providing do not contain quotes.

